253 research outputs found

    A comparison of the ichthyofaunas in two permanently open eastern Cape estuaries

    Get PDF
    The Kowie and Great Fish estuaries are situated less than 30 km apart, yet they differ considerably in terms of riverine inflow, turbidity, food resources and habitat availability. The ichthyofauna of the two estuaries were sampled using plankton, seine and gill nets. A greater ichthyofaunal richness (R) was recorded in the Kowie estuary and this is attributed to the wider range of habitats and greater degree of marine influence in this system. In contrast, all three sampling gears revealed an approximate 3:1 ratio between fish abundance in the Great Fish and Kowie estuaries. The higher abundance of fishes in the Great Fish estuary is partly attributed to the large organic and nutrient inputs into this system when compared with the Kowie system, and the influence of these inputs on estuarine primary and secondary production. Individual fish species are affected differently by turbid water conditions. Indications from this study were that piscivorous fishes (e.g. Lichia amia) which rely mainly on visual foraging methods were adversely affected by the high turbidity conditions within the Great Fish estuary, whereas piscivores (e.g. Argyrosomus hololepidotus) which rely mainly on non-visual methods were unaffected. Macrobenthic predators (e.g. Pomadasys commersonnii) and detritivo-rous fish species (e.g. Mugil cephalus) also appear to be unaffected by high suspensoid levels and were usually more abundant in the Great Fish than in the Kowie estuary. The length-frequency distributions of some of the dominanl fish species occurring in both estuaries are presented

    Conceptual Unification of Gravity and Quanta

    Get PDF
    We present a model unifying general relativity and quantum mechanics. The model is based on the (noncommutative) algebra \mbox{{\cal A}} on the groupoid \Gamma = E \times G where E is the total space of the frame bundle over spacetime, and G the Lorentz group. The differential geometry, based on derivations of \mbox{{\cal A}}, is constructed. The eigenvalue equation for the Einstein operator plays the role of the generalized Einstein's equation. The algebra \mbox{{\cal A}}, when suitably represented in a bundle of Hilbert spaces, is a von Neumann algebra \mathcal{M} of random operators representing the quantum sector of the model. The Tomita-Takesaki theorem allows us to define the dynamics of random operators which depends on the state \phi . The same state defines the noncommutative probability measure (in the sense of Voiculescu's free probability theory). Moreover, the state \phi satisfies the Kubo-Martin-Schwinger (KMS) condition, and can be interpreted as describing a generalized equilibrium state. By suitably averaging elements of the algebra \mbox{{\cal A}}, one recovers the standard geometry of spacetime. We show that any act of measurement, performed at a given spacetime point, makes the model to collapse to the standard quantum mechanics (on the group G). As an example we compute the noncommutative version of the closed Friedman world model. Generalized eigenvalues of the Einstein operator produce the correct components of the energy-momentum tensor. Dynamics of random operators does not ``feel'' singularities.Comment: 28 LaTex pages. Substantially enlarged version. Improved definition of generalized Einstein's field equation

    A strongly first order electroweak phase transition from strong symmetry-breaking interactions

    Get PDF
    We argue that a strongly first order electroweak phase transition is natural in the presence of strong symmetry-breaking interactions, such as technicolor. We demonstrate this using an effective linear scalar theory of the symmetry-breaking sector.Comment: LaTex, 15 pages, 3 figures in EPS format. Phys. Rev. D approved Typographically Correct version, minor grammatical change

    Global agricultural intensification during climate change: A role for genomics

    Get PDF
    Summary: Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change. &gt

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Building The Sugarcane Genome For Biotechnology And Identifying Evolutionary Trends

    Get PDF
    Background: Sugarcane is the source of sugar in all tropical and subtropical countries and is becoming increasingly important for bio-based fuels. However, its large (10 Gb), polyploid, complex genome has hindered genome based breeding efforts. Here we release the largest and most diverse set of sugarcane genome sequences to date, as part of an on-going initiative to provide a sugarcane genomic information resource, with the ultimate goal of producing a gold standard genome.Results: Three hundred and seventeen chiefly euchromatic BACs were sequenced. A reference set of one thousand four hundred manually-annotated protein-coding genes was generated. A small RNA collection and a RNA-seq library were used to explore expression patterns and the sRNA landscape. In the sucrose and starch metabolism pathway, 16 non-redundant enzyme-encoding genes were identified. One of the sucrose pathway genes, sucrose-6-phosphate phosphohydrolase, is duplicated in sugarcane and sorghum, but not in rice and maize. A diversity analysis of the s6pp duplication region revealed haplotype-structured sequence composition. Examination of hom(e)ologous loci indicate both sequence structural and sRNA landscape variation. A synteny analysis shows that the sugarcane genome has expanded relative to the sorghum genome, largely due to the presence of transposable elements and uncharacterized intergenic and intronic sequences.Conclusion: This release of sugarcane genomic sequences will advance our understanding of sugarcane genetics and contribute to the development of molecular tools for breeding purposes and gene discovery. © 2014 de Setta et al.; licensee BioMed Central Ltd.151European Commission: Agriculture and Rural Development: Sugar http://ec.europa.eu/agriculture/sugar/index_en.htmKellogg, E.A., Evolutionary history of the grasses (2001) Plant Physiol, 125, pp. 1198-1205Grivet, L., Arruda, P., Sugarcane genomics: depicting the complex genome of an important tropical crop (2001) Curr Opin Plant Biol, 5, pp. 122-127Piperidis, G., Piperidis, N., D'Hont, A., Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane (2010) Mol Genet Genomics, 284, pp. 65-73D'Hont, A., Unraveling the genome structure of polyploids using FISH and GISHexamples of sugarcane and banana (2005) Cytogenet Genome Res, 109, pp. 27-33D'Hont, A., Glaszmann, J.C., Sugarcane genome analysis with molecular markers: a first decade of research (2001) Int Soc Sugar Cane Technol Proc XXIV Congr, pp. 556-559Tomkins, J., Yu, Y., Miller-Smith, H., Frisch, D., Woo, S., Wing, R., A bacterial artificial chromosome library for sugarcane (1999) Theor Appl Genet, 99, pp. 419-424Vettore, L., Silva, F.R., Kemper, E.L., Souza, G.M., Silva, A.M., Ferro, M., Henrique-Silva, F., Monteiro-Vitorello, C.B., Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane (2003) Genome Res, 13, pp. 2725-2735Repbase http://www.girinst.org/repbase/Domingues, D.S., Cruz, G.M.Q., Metcalfe, C.J., Nogueira, F.T.S., Vicentini, R., Alves, C.S., Van Sluys, M.-A., Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns (2012) BMC Genomics, 13, p. 137National Center for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov/Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Edwards, R.A., The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes (2008) BMC Bioinformatics, 9, p. 386Keeling, P.L., Myers, A.M., Biochemistry and genetics of starch synthesis (2010) Annu Rev Food Sci Technol, 1, pp. 271-303Phytozome v9.1: Home http://www.phytozome.net/Dias, E.S., Carareto, C.M.A., Ancestral polymorphism and recent invasion of transposable elements in Drosophila species (2012) BMC Evol Biol, 12, p. 119Posada, D., Crandall, K., Intraspecific gene genealogies: trees grafting into networks (2001) Trends Ecol Evol, 16, pp. 37-45Swaminathan, K., Alabady, M.S., Varala, K., De Paoli, E., Ho, I., Rokhsar, D.S., Arumuganathan, A.K., Hudson, M.E., Genomic and small RNA sequencing of Miscanthus x giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses (2010) Genome Biol, 11, pp. R12Zanca, A.S., Vicentini, R., Ortiz-Morea, F.A., Del Bem, L.E., da Silva, M.J., Vincentz, M., Nogueira, F.T., Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane (2010) BMC Plant Biol, 10, p. 260Piriyapongsa, J., Jordan, I.K., A family of human microRNA genes from miniature inverted-repeat transposable elements (2007) PLoS ONE, 2, pp. e203Barrera-Figueroa, B.E., Gao, L., Wu, Z., Zhou, X., Zhu, J., Jin, H., Liu, R., Zhu, J.-K., High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice (2012) BMC Plant Biol, 12, p. 132Nagaki, K., Tsujimoto, H., Sasakuma, T., A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions (1998) Chromosom Res, 6, pp. 295-302Nagaki, K., Neumann, P., Zhang, D., Ouyang, S., Buell, C.R., Cheng, Z., Jiang, J., Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice (2005) Mol Biol Evol, 22, pp. 845-855Vicentini, R., Del Bem, L.E., Van Sluys, M.-A., Nogueira, F., Vincentz, M., Gene content analysis of sugarcane public ESTs reveals thousands of missing coding-genes and an unexpected pool of grasses conserved ncRNAs (2012) Trop Plant Biol, 5, pp. 199-205Kim, C., Lee, T.-H., Compton, R.O., Robertson, J.S., Pierce, G.J., Paterson, A.H., A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin (2013) Plant Mol Biol, 81, pp. 139-147Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Carpita, N.C., The Sorghum bicolor genome and the diversification of grasses (2009) Nature, 457, pp. 551-556Chang, Y., Gong, L., Yuan, W., Li, X., Chen, G., Li, X., Zhang, Q., Wu, C., Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice (2009) Plant Physiol, 151, pp. 2162-2173Feschotte, C., Transposable elements and the evolution of regulatory networks (2008) Nat Rev Genet, 9, pp. 397-405Wang, J., Roe, B., Macmil, S., Yu, Q., Murray, J.E., Tang, H., Chen, C., Ming, R., Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes (2010) BMC Genomics, 11, p. 261Garsmeur, O., Charron, C., Bocs, S., Jouffe, V., Samain, S., Couloux, A., Droc, G., D'Hont, A., High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane (2011) New Phytol, 189, pp. 629-642Jannoo, N., Grivet, L., Chantret, N., Garsmeur, O., Glaszmann, J.C., Arruda, P., D'Hont, A., Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome (2007) Plant J, 50, pp. 574-585Figueira, T.R.E.S., Okura, V., da Silva, F.R., da Silva, M.J., Kudrna, D., Ammiraju, J.S.S., Talag, J., Arruda, P., A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome (2012) BMC Res Notes, 5, p. 185Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Gillam, B., The B73 maize genome: complexity, diversity, and dynamics (2009) Science, 326, pp. 1112-1115Tenaillon, M.I., Hufford, M.B., Gaut, B.S., Ross-Ibarra, J., Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians (2011) Genome Biol Evol, 3, pp. 219-229Zhang, J., Yu, C., Krishnaswamy, L., Peterson, T., Transposable Elements as Catalysts for Chromosome Rearrangements (2011) Methods Mol Biol, pp. 315-326. , Totowa, NJ: Humana Press, Birchler JAMa, J., Wing, R.A., Bennetzen, J.L., Jackson, S.A., Plant centromere organization: a dynamic structure with conserved functions (2007) Trends Genet, 23, pp. 134-139D'Hont, A., Grivet, L., Feldmann, P., Rao, S., Berding, N., Glaszmann, J.C., Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics (1996) Mol Gen Genet, 250, pp. 405-413Bao, Y., Wendel, J.F., Ge, S., Multiple patterns of rDNA evolution following polyploidy in Oryza (2010) Mol Phylogenet Evol, 55, pp. 136-142Lynch, M., (2007) The Origins of Genome Architecture, , Sunderland, Massachussetts, USA: Sinauer Associates IncThe map-based sequence of the rice genome (2005) Nature, 436, pp. 793-800. , International Rice Genome Sequencing ProjectLiu, B., Xu, C., Zhao, N., Qi, B., Kimatu, J.N., Pang, J., Han, F., Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement (2009) J Genet Genomics, 36, pp. 519-528Lisch, D., How important are transposons for plant evolution? (2012) Nat Rev Genet, 14, pp. 49-61Udall, J.A., Wendel, J.F., Polyploidy and crop improvement (2006) Crop Sci, 46, pp. S3-S14Varshney, R.K., Graner, A., Sorrells, M.E., Genomics-assisted breeding for crop improvement (2005) Trends Plant Sci, 10, pp. 621-630Menossi, M., Silva-Filho, M.C., Vincentz, M., Van-Sluys, M.-A., Souza, G.M., Sugarcane functional genomics: gene discovery for agronomic trait development (2008) Int J Plant Genomics, 2008, p. 458732. , doi:10.1155/2008/458732Palhares, A.C., Rodrigues-Morais, T.B., Van Sluys, M.-A., Domingues, D.S., Maccheroni, W., Jordão, H., Souza, A.P., Vieira, M.L.C., A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers (2012) BMC Genet, 13, p. 51Andersen, J.R., Lübberstedt, T., Functional markers in plants (2003) Trends Plant Sci, 8, pp. 554-560Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C., Schulman, A., Analysis of plant diversity with retrotransposon-based molecular markers (2011) Heredity (Edinb), 106, pp. 520-530PGML BACMan On The Web: Grasses http://www.plantgenome.uga.edu/bacman/BACManwww.phpRice Genome Annotation Project http://rice.plantbiology.msu.edu/Bowers, J.E., Arias, M.A., Asher, R., Avise, J.A., Ball, R.T., Brewer, G.A., Buss, R.W., Soderlund, C.A., Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses (2005) Proc Natl Acad Sci U S A, 102, pp. 13206-13211Adam-Blondon, A.-F., Bernole, A., Faes, G., Lamoureux, D., Pateyron, S., Grando, M.S., Caboche, M., Chalhoub, B., Construction and characterization of BAC libraries from major grapevine cultivars (2005) Theor Appl Genet, 110, pp. 1363-1371Manetti, M.E., Rossi, M., Cruz, G.M.Q., Saccaro, N.L., Nakabashi, M., Altebarmakian, V., Rodier-Goud, M., Van Sluys, M.A., Mutator system derivatives isolated from sugarcane genome sequence (2012) Trop Plant Biol, 5, pp. 233-243Phrap http://www.phrap.org/RepeatMasker http://www.repeatmasker.org/Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Repbase update, a database of eukaryotic repetitive elements (2005) Cytogenet Genome Res, 110, pp. 462-467Han, Y., Wessler, S.R., MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences (2010) Nucleic Acids Res, 38 (22), pp. e199. , doi: 10.1093/nar/gkq862. Epub 2010 Sep 29Frickey, T., Lupas, A., CLANS: a Java application for visualizing protein families based on pairwise similarity (2004) Bioinformatics, 20, pp. 3702-3704Han, Y., Qin, S., Wessler, S.R., Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes (2013) BMC Genomics, 14, p. 71Keller, O., Kollmar, M., Stanke, M., Waack, S., A novel hybrid gene prediction method employing protein multiple sequence alignments (2011) Bioinformatics, 27, pp. 757-763Majoros, W.H., Pertea, M., Salzberg, S.L., TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders (2004) Bioinformatics, 20, pp. 2878-2879Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Hannick, L.I., Maiti, R., White, O., Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies (2003) Nucleic Acids Res, 31, pp. 5654-5666Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Wortman, J.R., Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to assemble spliced alignments (2008) Genome Biol, 9, pp. R7Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions (2011) Nat Methods, 8, pp. 785-786TMHMM Server v. 2.0 http://www.cbs.dtu.dk/services/TMHMM-2.0/Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., Barrell, B., Artemis: sequence visualization and annotation (2000) Bioinformatics, 16, pp. 944-945UniProt http://www.uniprot.org/InterPro: Protein sequence analysis and classification http://www.ebi.ac.uk/interpro/Conesa, A., Götz, S., Blast2GO: a comprehensive suite for functional analysis in plant genomics (2008) Int J Plant Genomics, 2008, pp. 1-12SUCEST-FUN Project http://sucest-fun.org/MG-RAST: metagenomics analysis server http://metagenomics.anl.gov/KAAS - KEGG automatic annotation server http://www.genome.jp/kegg/kaas/Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739Lyons, E., Freeling, M., How to usefully compare homologous plant genes and chromosomes as DNA sequences (2008) Plant J, 53, pp. 661-673Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp Ser, 41, pp. 95-98Geneious - Homepage http://www.geneious.com/Heslop-Harrison, P., Schwarzacher, T., (2000) Practical In Situ Hybridization, , Oxford, UK: BIOS Scientific Publishers LtdAljanabi, S., Forget, L., Dookun, A., An improved and rapid protocol for the isolation of polysaccharide-and polyphenol-free sugarcane DNA (1999) Plant Mol Biol Report, 17, pp. 1-8Maq: Mapping and assembly with qualities http://maq.sourceforge.net/SeqMonk http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/Gasic, K., Hernandez, A., Korban, S.S., RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA (2004) Plant Mol Biol Report, 22 (DECEMBER), pp. 437a-437gLi, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., The sequence Alignment/Map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680Bandelt, H.J., Forster, P., Röhl, A., Median-joining networks for inferring intraspecific phylogenies (1999) Mol Biol Evol, 16, pp. 37-48Paterson, A.H., Freeling, M., Tang, H., Wang, X., Insights from the comparison of plant genome sequences (2010) Annu Rev Plant Biol, 61, pp. 349-37

    The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication

    Get PDF
    High oil and protein content make tetraploid peanut a leading oil and food legume. Here we report a high-quality peanut genome sequence, comprising 2.54 Gb with 20 pseudomolecules and 83,709 protein-coding gene models. We characterize gene functional groups implicated in seed size evolution, seed oil content, disease resistance and symbiotic nitrogen fixation. The peanut B subgenome has more genes and general expression dominance, temporally associated with long-terminal-repeat expansion in the A subgenome that also raises questions about the A-genome progenitor. The polyploid genome provided insights into the evolution of Arachis hypogaea and other legume chromosomes. Resequencing of 52 accessions suggests that independent domestications formed peanut ecotypes. Whereas 0.42–0.47 million years ago (Ma) polyploidy constrained genetic variation, the peanut genome sequence aids mapping and candidate-gene discovery for traits such as seed size and color, foliar disease resistance and others, also providing a cornerstone for functional genomics and peanut improvement
    • …
    corecore